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This paper is concerned with understanding the dynamic behaviour of cavitating 
hydraulic machines during unsteady or transient operation. The linear transfer 
matrices which relate the small fluctuating pressures and mass flow rates at  inlet and 
discharge are functions not only of the frequency but also of the mean operating state 
of the machine, especially the degree of cavitation. The recent experimental transfer 
matrices obtained by Ng & Brennen (1978) for some axial flow pumps revealed some 
dynamic characteristics which were unaccounted for by any existing theoretical 
analysis; their visual observations suggested that the bubbly cavitating flow in the 
blade passages could be responsible for these effects. 

A theoretical model of the dynamic response of this bubbly blade-passage flow is 
described in the present paper. Void-fraction fluctuations in this flow result not only 
from pressure fluctuations but also because the fluctuating angle of attack causes 
fluctuations in the rate of production of bubbles near the leading edge. The latter 
causes kinematic waves which interact through the boundary conditions with the 
dynamic waves caused by pressure fluctuation. The resulting theoretical transfer 
functions which result are in good qualitative agreement with the experiments; with 
appropriate choices of two parameters (the practical values of which are difficult to 
assess) good quantitative agreement is also obtained. The theoretical model also 
provides one possible explanation of the observation that the pump changes from an 
essentially passive dynamic element in the absence of cavitation to a progressively 
more active element as the extent of cavitation increases. 

1. Introduction 
The purpose of this paper is to present an approximate theoretical model for the 

dynamic characteristics of cavitating hydraulic machines. It is motivated by a desire 
to understand some of the fundamental dynamic phenomena manifest in the recent 
experimental dynamic transfer functions obtained by Ng & Brennen (1978; see aIso 
Ng 1976; Ng, Brennen & Acosta 1976) for cavitating (and non-cavitating) axial 
inducer pumps. Those experimental results were presented in the form of dynamic 
transfer matrices [ZP] relating the linearized fluctuating pressures and mass flow 
rates at  the inlet to and discharge from the hydraulic machine. In particular, [ZP] 
was defined as 

(1) 
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where the subscripts 1 and 2 refer to conditions at  the inlet and discharge and & and 5 
are the non-dimensional oscillating total pressure and mass flow rate. The total 
pressure, which is defined as the sum of the local static pressure and the local velocity 
head based on the instantaneous velocity, is made dimensionless by dividing by 
i p L  U$, where p L  is the liquid density and UT is the speed of the impeller tip. The 
mass flow rate is made dimensionless by dividing by p L  UT Ai, where Ai is the cross- 
sectional area of the flow at the inlet plane of the impeller. 

In general f l  and 5 are complex in order to represent the phase differences between 
the oscillating quantities; thus, in general, [ZP] is complex. Furthermore [ZP] is a 
function not only of the frequency SZ but also of the mean operating state of the 
hydraulic machine, including the extent of cavitation. 

The quantity - ZP,, represents the non-dimensional impedance of the machine and 
is comprised of resistive and inertial components; at low frequency the resistance 
approaches a value which is simply given by the slope of the steady-state characteristic 
of head rise us. flow rate. The quantities ZP,, and ZP,,, which describe the difference 
between the instantaneous inlet and discharge flow rates, would be expected to be 
zero either (i) at low frequency or (ii) in the absence of cavitation or some other second, 
gaseous component within the flow (neglecting the liquid and structural compres- 
sibility of the machine). Furthermore the element ZP,, should also be zero in the 
absence of cavitation (or a second, gaseous component) since under such circumstances 
the head rise does not depend upon the absolute level of the inlet or discharge pressure. 
In  the presence of cavitation at  low frequencies one might anticipate that ZP,, 
should approach a value given by the slope of the steady-state characteristic of head 
rise ws. cavitation number. The experiments of Ng & Brennen (1978) were carried out 
to investigate how each of the elements varied with the degree of cavitation and with 
the frequency for some typical axial flow pumps. In the next section we shall discuss 
the experimental transfer matrices and present some further analysis which was 
performed for the purpose of more readily comparing those data with the theoretical 
model. 

The theoretical model presented in this paper was suggested and guided by visual 
observations of the cavitating flows made during the experiments reported in Ng & 
Brennen (1978). In an actual pump impeller cavitation is produced at  or near the 
leading edges of the blades and can take a number of forms (Brennen 1973). Most often 
in nominally steady flows it takes the form of a train of vapour bubbles (which may 
also contain some air) on the suction sides of the blades; these are convected through the 
blade passage, finally coIlapsing when they move into regions of higher pressure. 
Bubbles which have a similar subsequent history are often formed in the tip vortices 
at the leading edges of the blade tips. In the more advanced stages of cavitation fixed 
cavities or vapour-filled wakes may form on the suction sides of the blades; however, 
such fully developed cavities are normally accompanied by a great deal of bubbly 
cavitation and also degenerate into the bubbly form near the ends of the fixed cavities. 
We include here as figure 1 (plate 1) a high-speed photograph of cavitation taken 
during one of the experiments of Ng & Brennen (1978); this was taken under mean 
flow conditions of extensive cavitation and shows the bubbly form of the cavitation 
in the blade passages of one of the inducers. High-speed motion pictures of the same 
kinds of flow revealed observable fluctuations in this pattern of cavitation under 
oscillatory dynamic conditions. Thus the central element of the theoretical model 
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whose development begins in $ 3  deals with the dynamic response of this bubbly- 
passage flow. 

Previous theoretical attempts to simulate the dynamic characteristics of hydraulic 
machines have usually been made in the absence of complete and detailed experimental 
data. Though this is particularly true in the cavitating case, the dynamic data for 
non-cavitating flows are also limited, the work of Anderson, Blade & Stevens (1971) 
being one exception. Fanelli (1972) has been one of the leaders in developing theoretical 
methods for the analysis of the characteristics of non-cavitating hydraulic machines. 
Early attempts to construct theoretical models for cavitating pumps (e.g. Rubin 
1966; Wagner 1971; Vaage, Fidler & Zehnle 1972; Farrel & Fenwick 1973; Brennen 
& Acosta 1973; Brennen 1973) used the slopes of the steady-state characteristics of 
head rise us. flow rate and cavitation number plus some added ' cavitation compliance ' 
C, so that ZP,, = - iQC. Brennen & Acosta (1976) first pointed out that cavitation 
would also lead to a non-zero value of ZP,, like - iQM at low frequencies, where M ,  
the ' mass flow gain factor ', arose because of the variation in the volume of cavitation 
with the angle of attack at  the leading edges of the blades. 

Most of this later work concentrated on the contributions of fully developed and 
attached blade cavities to both C and M .  The contribution of the predominant bubbly 
form of cavitation to the dynamic characteristics has been relatively neglected though 
there has been some preliminary work on the dynamic response of cavitating streams 
of bubbles (Brennen 1973). The present paper represents an attempt to rectify this 
earlier neglect. 

Finally it is worth noting that though we concentrate here on applications to 
cavitating flows, it should be apparent that the model could quite readily be adjusted 
and used to study the dynamics of other kinds of two-phase and two-component flows 
in either pumps or turbines. In  particular, the dynamic problems in the operation of 
multiphase pumping referred to by Runstadler (1976) are closely related to the kinds 
of phenomena investigated in this paper. 

2. Experimental transfer matrices 
In the absence of cavitation Ng & Brennen (1978) found as expected that ZP,,, 

ZP,, and ZP,, were all effectively zero, the liquid and structural compressibility 
within the pump being negligible. The impedances (given by -ZP,,) which were 
obtained tended towards the expected resistive and inertial components at low 
frequency. However, as the non-dimensional frequency increased towards the highest 
investigated (0.5) the resistance first increased and then decreased and the inertia 
decreased (for details see Ng & Brennen 1978). Similar frequency-dependent resistances 
and inertias had also been seen in the non-cavitating performance of a centrifugal pump 
by Anderson et al. (1971). 

The situation was considerably different when even a quite modest amount of 
cavitation-was present. As the degree of cavitation was increased ZP,,, ZP,, and ZP,, 
all became increasingly non-zero and ZP,, deviated from its non-cavitating form. 
Typical experimental results were presented in Ng & Brennen (1978) for a 7.58 em 
diameter axial inducer which is a model of the low pressure oxidizer pump in the Space 
Shuttle main engine (Impeller IV). The qualitative characteristics of the transfer 
matrices for another impeller were quite similar; we shall concentrate here on Impeller 
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FIGURE 2. Polynomial curve fitting to experimental pump transfer matrices [ZP] obtained for 
Impeller IV at q5 = 0.070 and a rotational speed of 9000r.p.m. (Ng & Brennen 1978). The real 
and imaginary parts of the matrix elements are presented as functions of frequency by solid end 
dashed lines respectively. The letters A to E are the designations used by Ng & Brennen to denote 
mtrices taken at five prcgressively diminishing cavitation numbers r~ aa follows: (A) 0.508; 
(B) 0.114; (C)  0.046; (D)  0.040; (E)  0.023. 

IV, for which a larger number of matrices were obtained (for fourteen mean operating 
states, each at  seven different frequencies). The mean operating state was described 
by the flow coefficient 9, defined as U,/U, where U, and U, are respectively the 
average mean flow velocity a t  the leading edge of the inducer and the tip velocity of 
the inducer, and by the cavitation number CT, defined as (pf -p: ) /&pL UZ,, where 
p ;  and p: are respectively the mean pressure upstream of the inducer and the vapour 
pressure. The dimensionless frequency w was defined as Qh/U,, where his the blade-tip 
spacing ( =  2nR/N,  where R is the blade-tip radius, N the number of blades). The 
transfer matrices for Impeller IV were obtained at 9 = 0.070 (7 different d s  at a 
rotation speed of 9000 r.p.m., 3 different d s  at 12000 r.p.m.) and at 9 = 0.076 



Dynamic characteristics of cavitating pumps 227 

0 0. I 0.2 0.3 0.4 0.5 
Non-dimensional frequency. 1~ 

FIGURE 3. The determinants D for the matrices (plus the unit matrix) in figure 2; solid and 
dashed lines again represent real and imaginary parts respectively. 

(4 different, v's at 9000 r.p.m.). Subsequently we have fitted (using a least-squares 
procedure) both the real and the ima.ginary parts of the four [ZP] elements for each 
mean operating state (4, v) to simple polynomials in iw of the form 

where Nil, N21, N,, = 3 and N,, = 5 .  The higher order for ZP,, represents an attempt 
to extract a little more of the evident detail in the frequency-dependent resistance 
- aOl2 + w2a2,, - w4ad12 and inertia - all, + w2a312 - w4a,,, comprising the impedance. 
Quasi-static considerations of continuity of mass (e.g. Brennen & Acosta 1976) 
demand that and aO2, should be zero, thus they were set at  these values prior to 
the fitting procedure. Preliminary examination (see Ng & Brennen 1978) of the 
remaining non-zero coefficients (particularly the compliance - a121 and the mass flow 
gain factor -al2,) and their variation with IT strongly suggested a dependence like 
cr-4 and u-l for these coescients. 

The results of this fitting procedure for the cases in which q5 = 0.070 are presented 
in figure 2 in the form of the variation of each of the four elements with frequency for 
various cavitation numbers. The real and imaginary parts are displayed as solid and 
dashed lines respectively. The real and imaginary parts of the determinant 

D = (ZP,, + 1) (ZP,, + 1) - ZP,, ZP,, (3)  

are presented similarly in figure 3. All of the qualitative characteristics of these curves 
are also evident in the basic data as can be determined by comparison with the three 
transfer functions presented in Ng & Brennen (1978). Further discussion of the data 
in figures 2 and 3 will accompany the comparison with figures 5 and 6. 
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FIQURE 4. Schematic diagram of the cascade used in the bubbly 
blade-passage flow model of pump dynamics. 

3. Cavitating or two-phase inducer model 
The purpose of this section is t b  do the groundwork for the later examination of 

the dynamic consequences of bubbly flow in the blade passages of a pump impeller. 
We shall assume that the flow through the impeller has no radial component and 
examine the resulting cascade flow indicated in figure 4; this figure depicts the basic 
hydrodynamic model which will be investigated. The flow of pure liquid upstream 
of the inducer is indicated by %he upstream velocity triangle; here vl is the absolute 
liquid velocity (assumed purely axial and therefore equal to its axial component 
val) and q1 is the velocity relative to the inducer blades, whose velocity is denoted by 
U,. To simplify the dynamic problem it will be assumed that the inducer velocity 
U, is a constant and does not oscillate (in many practical situations this is indeed the 
case). The velocities q1 and val have mean (time-averaged) components upon which 
are superimposed small oscillatory components; for convenience the mean value of 
val is denoted by U,, so that the flow coefficient q5 of the mean flow is U,/U,. Other 
quantities at this upstream point 1 are designated by the single subscript 1. 

Clearly the dynamic response of the kinds of cavitating flow described in Q 1 is a 
very complex matter indeed. In this paper we shall construct a rather gross model of 
the cavitation, but one which is at  least amenable to dynamic analysis. The variations 
in the flow across the blade passage will be smeared out so that the analysis of the 
events in the passage is purely one-dimensional and quantities vary only with 5, the 
co-ordinate measured along the passage from the blade-passage entrance. The point 
at  which the bubbles collapse is denoted by x = 1, (figure 4); downstream of this point 
it is assumed that the passage contains only liquid, the blade-passage discharge being 
located at x = 1. 

The volume of bubbles in the blade passage in any steady cavitating flow is primarily 
a function of the cavitation number CT and angle of attack 8. Though, in practice, 
there are also Reynolds number effects, Weber number effects and often strong 
thermal effects (Brennen 1973), we shall neglect these for the purposes of this paper. 
We shall denote the time- and space-averaged mean void fraction of the bubbles in 
the region 0 c x < 1, by a,,, and assume that there is no slip velocity between the 
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phases in this region. If the blade thickness i s  neglected (though its effects could 
readily be included) it follows from continuity that the mean velocity in the blade 
passage is u, = U,/( 1 -a,) sin y in 0 c x < 1, and U,/sin y in 1, < x < 1. To compute 
results we shall need to choose representative values of a,; these will clearly increase 
with decreasing cr. Apart from direct observation, which is difficult, an estimate of 
the effective values of a, is suggested by the work of Stripling & Acosta (1962). They 
demonstrated that the additional inducer head loss associated with cavitation could 
be attributed in large measure to the lack of efficient pressure recovery in the flow near 
the cavity collapse region. That is to say, the mixing losses in this region dissipate 
any potential pressure rise accompanying the reduction in velocity from the value 
U,/( 1 - a,) sin y to U,/sin y. If the head coefficient $ is defined as the tokal head rise 
across the pump divided bypl%,, then the reduction A$ in this value msociated with 
the cavitation will be of order 

A$ = ~ ~ ~ ( 2 - a , ) ~ ~ / 2 ( 1 - a ~ ) ~ s i n * y .  (4 1 
With this functional relation A$(ao, 4) and given the cavitation performance of an 
inducer in the form A@(a, 4) one can clearly deduce some rough estimate of the relation 
between a. and cr. For example, the steady-state cavitation performance data for 
Impeller IV (see Ng & Brennen 1977) yielded values of a, of about 0.16, 0.10 and 
0.02 a t  cr = 0.02,0.03 and 0.045 respectively. On this basis we can make a reasonable 
estimate of the effective value of a, a t  a given cavitation number. 

As the upstream flow oscillates, this produces B fluctuation in the angle of attack 
,8. This will produce a fluctuation in the number and volume of bubbles generated at  
the leading edge per unit time. Furthermore, we shall assume that this inhomogeneity 
in the void fraction or mixture density is convected through the blade passage at  the 
mixture velocity u, (figure 4). This leads to fluctuating terms like &, exp (iQt - iQx /u , )  
in the void fraction or - p L & ,  exp (istt-iQz/u,) in the mixture density in the blade 
passage ( t  is time). We shall asaume that the amplitude &, is proportional to the 
amplitude of the angle of attack fluctuation and therefore proportional to the amplitude 
of the upstream mass flow rate fluctuation 6il according to 

= -M*6i1. ( 5 )  

We shall gee that the factor of proportionality M * is analogous in its dynamic effect 
to the mass flow gain factor derived previously for fully developed leading-edge blade 
cavities (Brennen & Acosta 1976), 

In the region 0 < x < 1, of the blade passage the pressure p(x) ,  mixture density 
p(z), void fraction a ( x )  and mixture velocity u ( x )  are divided into their mean and 
fluctuating components according to the notation 

(6) 1 p ( x )  = p ,  + @ ( x )  Pt, p ( x )  = po  + p"(x) eiRt, 
a(%) = a, + &(x) eint, u(x)  = u, + Q ( x )  emt, 

where p,,, p ,  = pL( 1 - a,), a, and uo are assumed independent of x. The local mixture 
density p ( x )  = - p L Z ( x )  or void fraction will also be a function of the local pressure 
p(x) .  To represent this we require a compressibility K *  for the mixture. The com- 
pressibility of a gas/liquid mixture, namely a,( 1 - a o ) p L / p ,  where p is the pressure, 
is not appropriate since cavitation bubbles have a much greater compressibility. 
However, some earlier work on the dynamics of streams of cavitating bubbles 
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(Brennen 1973) suggests that to a first approximation we might still consider tihe 
cavitating bubble/liquid mixture to have some compressibility K*,  which will be 
assumed uniform. If this fluctuation with pressure is superimposed on the inhomo- 
geneity described earlier the mixture density is then given by 

p”(x) = ptN*fi,exp ( -iQ2x/uo) +K*p(x). (7) 

It also follows that if the cross-sectional area of the blade passage is A,, (assumed 
constant) then the mean mass flow of liquid is pouo A,, and the fluctuating mass flow 
of liquid is ABP(pO.ii(x) +uop(x)}. It is convenient for the purpose of the analysis of 
the blade-passage dynamics to define the non-dimensional mass flow fluctuation 
amplitude fi(x) as a fraction of the mean mass flow (note that this differs by a factor 
q5 from the dimensionless pump inlet and discharge mass flow rates fil and hi2) so that 

m(x) - = - E(X) +- M *  5,exp (--i$) +K*p(x). 
uo 1-a, Po 

The values of fi a t  x = 0 and x = 1, must clearly be equal to the fractional amplitudes 
of the mass flow rate fluctuation far upstream and far downstream of the pump 

(9) 
respectively, so that 

fi(0) = ?!El/$, %(ZC) = %(Z) = f i2/$.  

4. Blade-passage dynamics 
We are now in a position to discuss the dynamic behaviour of the flow in the blade 

passage. Since this is assumed to have a constant cross-sectional area continuity of 
mass requires that a 

at ax 
%+- (pu) = 0, 

or in terms of the fluctuating quantities defined by the (6), 

a.ii ap 
ax Oax 

icIp+po-+u - = 0. 

Furthermore, the equation of motion governing these fluctuating quantities is 

~ + i ~ p o . i i + p o u o ~  a.ii = -pLuof.ii, 
8X 

where we have inserted a characteristic frictional term on the right-hand side to 
simulate the frictional resistance in the blade passage, f being a friction coefficient 
(actually the conventional friction factor divided by the hydraulic radius). Substituting 
(7) into (1  1 )  we obtain 

(13) 
ap a.ii 
ax 

iRK*fj+uoK*-+poG = 0. 

The solution of (12) and (13) for @(z) and .ii(x) yields 

P(X) = Po U$Ct.l Gexp (71 X / U  + 6 2  exp ( 7 2  X/ZC)19 (14) 

(15) 5(x) = G exp (7jll x/Zc) + H exp (qzx/Zc) +Hfi(O) exp ( - is2x/uo), 
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where M = M *$/( 1 - ao) and (8) and ( 9 )  have been used. Here G and H are constants 
and r ] ,  and r ] ,  are the solutions of the dispersion relation 

7' = K@(7+ialc/uo) (a+iazC/uo+fz,(1-ao)), ( 1 6 )  

where for later convenience we have defined K I K* U& and the factor $/( 1 - ao)a sin2 y 
is denoted by A. Furthermore in (14 )  

51.2 = wazc K*uo) 71,Z' ( 1 7 )  

It follows from (14 )  and (15 )  that the pressures and fractional mass flow rates at  the 
limits of the bubbly region are related by 

ZB,, = - 1 + Me-io'c/uo + ( 1  - M )  [r] ,  exp (7,) - 7, exp (r],)]/(7, - 7,). ( 2 2 )  

These elements then comprise the transfer function for the bubbly region of flow. 
Though further manipulation is necessary (see below) to obtain the transfer function 
for the pump, it is nevertheless worthwhile examining the above elements in order 
to identify the physical components which they imply. If rl, 7, < 1 ( K h  < 1 and 
QZc/uo < 1 )  then the elements ZB become 

ZB,, x K $ A ( 2 i ~ + f Z c ( l - a o ) ) ,  ZB,, x - 2 ( l - M )  , ( 2 3 ) ,  ( 2 4 )  
UO 

QZ, K$h 
ZB,, x -i  (u,) - 

2 '  

Comparing these with the quasi-steady analysis of pump dynamics (Brennen & 
Acosta 1976; Ng & Brennen 1978), we see that ZB,, contains inertial and resistive 
terms O(ia) and O( 1 )  respectively, ZB,, contains the  expected compliance term and 
ZB,, contains the expected mass flow gain factor. 

Finally for future purposes we also note that the determinant D of [ZB] + [I], 
where [I] is the unit matrix, is 

D =  " ("l) -" 
71 - 72 

(") M exp ( - iQZc/u0) + (1 - M )  exp (7, + v,), ( 2 7 )  

which for small Qlc/uo and Kh reduces to 

D x ( 1  - iaZ, M/uo) ( 1  + 2iaZc K$h/uo + fZ, K @ ) .  ( 2 8 )  
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5. Pump transfer function 
In order to construct the pump transfer function we must now relate the pressures 

and mass flow rates at x = 0 and x = 1, to their values upstream and downstream of 
the cascade. The relations between the mass flow rates have already been described 
in (9); it remains to relate the pressures. 

In  nominally steady flow it is conventional to define pump characteristics in terms 
of total-head quantities rather than the static pressure upstream and downstream of 
the pump. In the present dynamic study we therefore define a dynamic total pressure 
quantity Hi which is the sum of the instantaneous pressure and the instantaneous 
dynamic contribution either upstream (i = 1)  or downstream of the pump (i = 2). 
This is then divided into a mean component Hoi, and an oscillatory component &, 
according to Hi = Hoi + I?i emt. 

Furthermore we non-dimensionalize f i i  by dividing by &pL Vj, to obtain the dimen- 
sionless dynamic total pressure &,. It follows from linearization that 

(29) 

6, = P i / ( $ P L  G) + 2$%, (30) 

where @i is the oscillatory static pressure. 

blades at the entrance x = 0 to the blade passage (figure 4) it  follows that 
Now if we assume that the fluid velocity relative to the blades is parallel to the 

Hl+ (a$/w, - (a$/w, - 0  = P(0)  + i P L { u ( o ) } 2 .  (31) 

The aq5/8t terms represent a pressure difference due to the inertia of the mass of fluid 
between the point 1 and the blade-passage entrance (or leading edge of the pump 
blades). The experimental dats, (Ng & Brennen 1978) are usually given in terms of an 
H,, from which this inertia oontribution has been removed; thus we may delete the 
aq5/at terms. Using continuity, it follows that the linearized perturbation quantities 
are related by 

~(0) = i p L  U:{K1 - 2$6,/(1 - 01,)2 sin2 y }  

and with % ( O )  = Gl/+ this completes the necessary link with the blade-passage flow 
on the inlet side. 

Downstream of the bubbly flow we must first relate @(Z,) to @(Z) a t  the blade-passage 
discharge. We retain the same friction coefficient for 1,. < x < 1 as was used in 0 < x < 1,. 
Clearly this is not necessary and it is only done here for simplicity. Then the relation 
between @(Z,) and @(Z) can be obtained either by constructing its inertial and resistive 
parts or by taking the appropriqte limits of the analysis in the last section and appIying 
it to the region 1, < x < I :  

(32) 

Finally @(Z) may be related to the downstream dynamic total pressure & in a manner 
analogous to that by which the relations at the inlet were obtained. Hence 

(34) P(Z) = &pL u",& + 26,  cot y - 2$k2 cosec2 y). 

The second term in the braces in (34) is most important; it  is analogous to the usual 
theoretical slope of the head rise vs. flow curve for a pump [this may be seen by setting 
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p(0)  = @(Z) and f i , = fi, and subtracting (32)  from (34)l .  The actual experimental 
slope of this curve is modified by a difference between the pressures p(0 )  and $ ( I )  
due to the many kinds of loss which occur in an actual axial flow pump. These loss 
terms are represented here by the friction coefficient f included in the blade-passage 
analysis. 

It remains only to use (32)-(34) in order to construct the pump transfer function 
[ZP] from the transfer function [ZB]. The resulting elements of [ZP]  can then be 
written in terms of the following variables: 

(i) The blade angle y. 
(ii) The geometric ratio T = Zsinyfh of 6he axial inducer length to the blade-tip 

(iii) The flow coefficient 4. 
(iv) The usual, dimensionless frequency for pump dynamics w = Qh/U,. 
(v) A blade-passage resistance parameter F = fZ$/sin,y. In  the results which follow 

this was simply chosen such that the total pump resistance (or magnitude of the real 
part of ZP,,) matched the experimental data for quasi-steady or mean flow per- 
formance. 

(vi) The fractional length of the bubbly region E = ZJZ. In practice this is in turn 
a function of q5 and the cavitation number u. 

(vii) The mean void fraction a,. Values could be determined as indicated in 9 3. 
(viii) The compressibility or compliance K .  
(ix) The mass flow gain factor M .  
Then if 

spacing. 

Q = - 2 cot y + 2q5/sinay - 2 i w (  i - s)/sinzy - 2( 1 - E )  B 

it transpires that 
ZPii = ZBii + QzPzi, (35)  

zP12 = A( 1 - 010) zB1, + Q( 1 + ZB,,) - 2h( 1 + ZP,,), (36) 

ZP21 = ZB, , /W-  ao), (37)  

ZP,, = ZB,, - 2ZB,,/( 1 - ao), (38) 

where, as before, A = q5/( 1 - a0)2sin2 y and the elements of [ZB] are computed from 
(19)-(22), where, with the above variables, 

QZc/uo = w ~ 7 (  1 - ao)/q5, fZc( 1 -a,) = Fe/h(  1 - ao). (39)  

This, then, is the source of the transfer functions described in the next section. Before 
examining these it is, however, instructive to indicate the low frequency limits of the 
[ZP] elements. Using the asymptotes (23)-(26), it  transpires that for small values of 
w ,  K ,  a. and M 

ZP,,-+K$PE/(l - a o ) + ~ i w K r s { 2 c o t y + ( 2 - e ) P + 2 h ( l - a ~ ) } ,  (40) 

ZP,, -+ - iw(27/sin2 y )  - 2 cot y - 2F, (41) 

ZP,, + - 4 i ~ ~ 7 K ,  (42) 

ZP,, -+ - i ~ ~ 7 { (  1 - ao) M / $  - Kh}. (43) 
Here the expected inertial and resistive terms appear in ZP,,, a compliance +TK 
appears in Z,, and a mass flow gain factor appears in Z,, which is a function of M and 
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K ,  though the second (or K-dependent) term is usually small compared with the first 
(or M-dependent) term. 

Finally it is important to note that the determinant of [ZP] + [ I ]  is always equal 
to the determinant of [ZB] + [ I ]  and is therefore also given by D [see (27)]. 

6. Results 
In  presenting the results for the theoretical transfer functions, it  is simplest to fix 

some of the nine parameters listed in the last section a t  representative values and 
explore the variation in the dynamics with the remaining parameters. Thus we shall 
restrict our attention to a representative impeller like those investigated experi- 
mentally by Ng &, Brennen (1978) by choosing a blade angle y of 9" and a value of 
r of 0.45. Furthermore we shall choose to examine the dynamics at a mean operating 
flow coefficient q5 of 0.07 and plot the results as functions of non-dimensional frequency 
up to about 0.5. 

It is most suitable to choose the value of the blade-passage resistance parameter P 
such that the total pump resistance in the absence of cavitation and at low frequencies, 
2 cot y + 2F, agrees with the value given in figure 2. This demanded a value of P of 
about 3. 

The experimental data in figure 4 were displayed for various values of the mean 
cavitation number a; having fixed $, this is the only remaining variable describing 
the mean operating state. Both the fractional length of the bubbly region E and the 
mean void fraction will clearly be functions of u. A reasonable functional relation for 
a,(u) was determined from the experimental data in § 3. However, it was established 
fairly early on in the calculations that the actual value of a, had only a minor effect 
on the transfer matrices; indeed the effect could readily be neglected if a, was only 
0.1 or 0.2, and according to (4), a, approached such values only when u was quite 
close to the breakdown cavitation number. Consequently in most of the data presented 
a, is taken as zero for simplicity. 

It was therefore clear that the primary effect of the cavitation arose through the 
variation of E with u. Measurements of the extent of the cavitating bubbles from 
photographs of the cavitating Impeller IV at various u showed that this functional 
relation could be approximated by 

6 = @/u, (44) 

where u* was a constant with a value of about 0.02 for Impeller IV. However, for the 
purposes of more general interpretation the results will be presented with E rather 
than u values representing the mean flow cavitation condition. 

Finally we must discuss the two remaining parameters in the calculations, K and M .  
No really satisfactory way to determine practical values of these quantities has yet 
occurred to us. Thus we have simply regarded these for the present as the two arbitrary 
parameters in the calculation and explored the dependence of the results on these 
parameters. (In this regard it should be noted that, though ZP,, and ZP,, depend on 
both K and M ,  ZP,, and ZP,, depend only on K and not on M . )  

Pump transfer matrices [ZP] with $ = 0.07, y = go, 7 = 0.45, a, = 0, F = 3, 
K = 0.9 and M = 0.7 are presented in figure 5 for E = 0.2,0.4,0.6 and 0.8. The corre- 
sponding values of the determinant D are presented in figure 6 .  For the purpose of 
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FIGURE 5. Theoretical pump transfer matrices [ Z P ]  for Impeller I v  (4 = 0.07, y = 9", 7 = 0.45, 
P = 3) as functions of frequency for tco = 0, K = 0.9, M = 0.7 and the following values of E :  

(A) E = 0.2; (B)  E = 0.4; ( C )  E = 0.6; ( D )  E = 0-8. These correspond to increasingly extensive 
cavitation or regions of bubbly flaw in the blade passage. The real and imaginary parts are 
represented by solid and dashed lines respectively. 

tracing the origin of the [ZP] elements the corresponding bubbly blade-passage 
region transfer functions [ZB] are displayed in figure 7 for 8 = 0.4 and 0.8. It can be 
seen by comparing figures 5 and 7 and by examining (35)-(38) that apart from the 
multiplicative factor h in ZP,, most of the important dynamics in the elements ZP,,, 
ZP,, and ZP,, are carried straight through from ZBll, ZB,, and ZB,, and are therefore 
derived primarily from the dynamic response of the bubbly flow. The impedance 
element ZP,, is primarily the result of the addition of AZB,, and the impedance Q 
of the rest of the blade-passage flow. 

It can be seen by comparing figures 2 and 5 that most of the important trends in 
the data are also manifest by the bubbly flow model. Computations with other choices 
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for K and H indicated that the qualitative trends were the same over a fairly wide 
range of K and M ;  however, we have presented the data for K = 0.9 and M = 0.7 
because values of this order also appeared to yield fair quantitative agreement with 
the data for Impeller IV (figure 2). In  examining the comparison, starting with the 
impedance ZP,,, we should not, of course, expect to reproduce the frequency- 
dependent behaviour of the resistance and inertia in non-cavitating flow as typified 
by the curves A in figure 2; a more complex model of the flow without bubbles would 
be required to do this. However, it  is clear that we have reproduced the trends (i) for 
the resistance at higher frequencies to decrease with increasing cavitation (increasing 
E )  and (ii) for the inertia first to decrease and then increase with increasing cavitation. 
With regard to this second point we digress briefly to discuss the effect on the computed 
results of small but non-zero ao; this is typified by figure 8, which compares the results 
for a. = 0 and a, = 0.1 for E = 0.6. The earlier statement of the relative insensitivity 
to a,, is justified by figure 8. Perhaps the most significant effect of non-zero a. is, 
however, an increase in the inertia. Since values of a. of the order of 0.1 or 0.2 would 
in practice occur only at large E ,  this would magnify the increase of the inertia with E 

at large E .  The initial decrease and subsequent increase of the inertia with increasing 
cavitation for all but the highest frequencies is clearly manifest in the experimental 
data in figure 2. 

Turning to ZP,,, it  would appear that the model is in satisfactory agreement with 
the data with the exception of the data line E for the real part of ZP,, in figure 2, 
which has a much larger positive vdue at  low frequencies than the corresponding 
theoretical calculation (e.g. line D in figure 5 ) .  The data line E is not just an odd data 
point; other transfer matrices measured at very low cavitation numbers yielded similar 
large positive intercepts on the w = 0 axis. The reason for this is not clear at  present. 
(It should however be recalled that Ng & Brennen ( 1  978) pointed out that the measure- 
ments at  these very low cavitation numbers may include significant nonlinear effects.) 
As mentioned previously, the model values of ZP,, (and ZP,,) are independent of M 
and depend only on K .  In this respect it is encouraging to note that during analysis 
of the dynamics of liquid-oxygen pumps for space vehicles Wagner (1971; see also 
Rubin, Wagner & Payne 1973) found that the ‘pressure gain’ (which we interpret 
somewhat arbitrarily as the real part of ZP,,) was proportional to the ‘compliance’ 
(or imaginary part of ZP,, divided by - i w ) .  It can be seen from (40) and (42) that at  
low frequencies this is indeed the case in the present model; the factor of proportion- 
ality is equal to 2$F/r for small a,. 

The comparison of experiment and theory for the remaining elements, ZP,, and 
ZP,,, requires little discussion. Since the experimental data for these quantities are a 
little more scattered than for ZP,, or ZP,, the agreement would appear to be as good 
as could be expected. The imaginary parts of ZP,, and ZP,, manifest ‘compliances’ 
and ‘mass flow gain factors’ which increase as the extent of cavitation increases, 
while the trends in the real parts are consistent with the experimental observations. 

The theoretical determinants D corresponding to figure 5 are presented in figure 6 
and indicate trends similar to those of the data in figure 3 with increasing cavitation. 
The importance of this determinant has been stressed in a recent paper (Brennen 
1978); the fact that ID1 1 in the cavitating cases implies a dynamic element which 
is behaving actively rather than passively. Both figures show the deviation from a 
dynamical passive system as r~ is decreased ( E  increased). The discrepancy in the real 
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parts of ZP,, at low frequencies manifests itself again in larger values for the real 
part of D in the data than are forthcoming in the model; the trend is correct but the 
magnitudes are not in agreement. It should be noted that the deviation of D from unity 
is primarily a function of the parameter M [see (27)]; in fact, without this oscillatory 
production rate of bubbles a t  the leading edge, 101 would always be unity. It is 
probable that this deviation from passivity is responsible for the pump-induced 
hydraulic system resonances known as auto-oscillations experienced with many 
cavitating inducers (see, for example, Sack & Nottage 1965; Young, Murphy & 
Reddecliff 1972; Natanzon et al. 1974; Kamijyo 1975). 
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7. Concluding remarks 
The purpose of this paper has been to explore some of the possible dynamic 

mechanisms manifest in the measurements of the dynamic transfer matrices of 
cavitating pumps made by Ng & Brennen (1978). Though the bubbly blade-passage 
flow model which has been presented here appears to go a long way towards explaining 
the dynamic characteristics manifest in the experiments, there do remain some 
questions which seem to need further experimental and theoretical attention. The 
primary building blocks for the model are the two kinds of dynamic disturbance 
created in the bubbly blade-passage flow, namely those due to the oscillation in the 
void fraction caused by the fluctuating production of bubbles at the leading edge 
(characterized by the parameter M )  and those due to the compliance K of the bubbles 
to the local oscillatory pressure. Indeed, it would not seem unreasonable to suggest 
that almost any unsteady two-phase flow will in practice exhibit both kinds of wave, 
the formcr kinematic and the latter dynamic. In the present context the principal 
difficulty lies in evaluating the parameter M and the compliance K for a cavitating 
cascade; the latter is more amenable to theoretical evaluation (e.g. Brennen 1973) 
but the former requires further attention. The present model is also rather crude in 
that it treats a flow which is smeared out or averaged laterally across the blade passage 
and also neglects mean pressure and velocity gradients along the passage. Clearly it 
is possible to improve the model in these respects though at  a cost of considerable 
algebraic complexity. Prior to implementing such sophistication it would seem wise 
to carry out further experimental investigations to examine, for example, the pro- 
pagation of the osciIlatory pressure along the blade passage. 

The author is very grateful to Professor Allan Acosta for discussions on the subject 
matter. This work was supported by the National Science Foundation under Research 
Grant ENG 76-11225 and by NASA George Marshall Space Flight Center under 
Contract NAS 8-28046. 

REFERENCES 

ANDERSON, D. A., BLADE, R. J. & STEVENS, W. 1971 Response of a radial-bladed centrifugal 
pump to sinusoidal disturbances for non-cavitating flow. N.A.S.A. Tech. Note D-0550. 

BRENNEN, C. 1973 The dynamic behavior and compliance of a stream of cavitating bubbles. 
Tram. A.S.M.E., J .  Fluids Engng 95, 533-542. 

BRENNEN, C. 1978 On the unsteady, dynamic response of phase changes in hydraulic systems. 
Proc. Int. Sem., Int. Cen. Heat Mass Transfer, Dubrovnik. Washington : Hemisphere. 

BRENNEN, C. & ACOSTA, A. J. 1973 Theoretical, quasi-static analysis of cavitation compliance 
in turbopumps. J .  Spacecraft Rockeh 10, 175-180. 

BRENNEN, C. & ACOSTA, A. J. 1970 The dynamic transfer function for a cavitating inducer. 
Trans. A.S.M.E., J. Fluids Engng 98, 182-191. 

FANELLI, M. 1972 Further considerations on the dynamic behavior of hydraulic turbo- 
machinery. Water Power, June 1972, pp. 208-222. 

FARREL, E. C. & FENWICK, J. R. 1973 POGO instabilities suppression evaluation. N.A.S.A. 
Rep. CR-134500. 

KAMIJYO, K., SUZWI, A., SHIMTJRA, T., HASHIMOTO, R., WATANABE, M., WATANABE, Y. ,  
IWABUCHI, T. & MORI, Y .  1975 Experimental investigation of small, high-speed, high-head 
liquid oxygen pump. Nat. A e r q a c e  Lab. Jopalz Rep. TR-415. 



240 C. Brennen 

NATANZON, M. S., BL'TSEV, N. I., BAZHANOV, V. V. & LEYDERVARGER, M. R. 1974 Experi- 
mental investigation of cavitation-induced oscillations of helical inducers. PluicE Mech., 

NG, S. L. 1976 Dynamic response of cavitating turbomachines. Ph.D. thesis, California Institute 
of Technology, Pasadena. (See also Div. Engng Appl. Sci., Caltech, Rep. E184.1.) 

Na, S .  L. & BRENNEN, C. 1978 Experiments on the dynamic behavior of cavitating pumps. 
T r m .  A.S.M.E.,  J. Fluids Engng 100, 166-176. 

NG, S .  L., BRENNEN, C. & ACOSTA, A. J. 1976 The dynamics of cavitating inducer pumps. 
Proc. Int. Conf. Two Phase Flow Cavitation, Int. Assoc. Hyd .  Res., G'renoble, pp. 383-398. 

RUBIN, S. 1966 Longitudinal instability of liquid rockets due to propulsion feedback (POGO). 
J .  Spacecraft Rockets 3,  1188-1195. 

RUBIN, S., WAGNER, R. G. & PAYNE, J. G. 1973 POGO suppression on space shuttle - early 
studies. N.A.S.A. Rep. CR-2210. 

RUNDSTADLER, P. W. 1976 Review and analysis of state-of-the-art of multiphme pump 
technology. Electric Power Res. Inst., Palo Alto, Cali$., Rep. NP-159. 

SACK, L. E. & NOTTAGE, H. B. 1965 System oscillations associated with cavitating inducers. 
J. Basic Engng D 87, 917-925. 

STRIPLING, L. B. & ACOSTA, A. J. 1962 Cavitation in turbopumps - Part I. J .  Bmic Engng 
D 84, 326-338. 

VAAGE, R. D., FIDLER, L. E. & ZEHNLE, R. A. 1972 Investigation of characteristics of feed 
system instabilities. Martin Marietta Corp., Denver, Colorado, Final Rep. MCR-72- 107. 

WAGNER, R. G. 1971 Tital I1 engine transfer function test results. Aerospace Corp., El Segundo, 
Calq., Rep. TOR-0059 (G471)-9. 

YOWNG, W. E., MURPHY, R.  & REDDECLIFF, J. M. 1972 Study of cavitating inducer instabilities. 
Pratt Whitney Aircraft, Florida, R .  & D.  Center Rep. PWA FR-5131. 

SOV. R M .  3,  38-45. 



Joumal of Fluid Mechanics, Vol. 89, part 2 Plate 1 

FIGURE 1. A high-speed photograph of the cavitation in Impeller IV  taken during the experiments 
of Ng & Brennen (1978) under conditions of extensive cavitation (c 0.024). The flow is from 
right to left. 

BRENNEN (Facing p .  240). 


